Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Biotechnol Biofuels Bioprod ; 17(1): 63, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730312

ABSTRACT

BACKGROUND: The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance. Although these undesirable side effects are often associated with acute selection regimes, the utility of using harsh ethanol treatments to obtain robust ethanologenic yeasts still has not been fully investigated. RESULTS: We conducted an adaptive laboratory evolution by challenging four populations (P1-P4) of the Brazilian bioethanol yeast, Saccharomyces cerevisiae PE-2_H4, through 68-82 cycles of 2-h ethanol shocks (19-30% v/v) and outgrowths. Colonies isolated from the final evolved populations (P1c-P4c) were subjected to whole-genome sequencing, revealing mutations in genes enriched for the cAMP/PKA and trehalose degradation pathways. Fitness analyses of the isolated clones P1c-P3c and reverse-engineered strains demonstrated that mutations were primarily selected for cell viability under ethanol stress, at the cost of decreased growth rates in cultures with or without ethanol. Under this selection regime for stress survival, the population P4 evolved a protective snowflake phenotype resulting from BUD3 disruption. Despite marked adaptation trade-offs, the combination of reverse-engineered mutations cyr1A1474T/usv1Δ conferred 5.46% higher fitness than the parental PE-2_H4 for propagation in 8% (v/v) ethanol, with only a 1.07% fitness cost in a culture medium without alcohol. The cyr1A1474T/usv1Δ strain and evolved P1c displayed robust fermentations of sugarcane molasses using cell recycling and sulfuric acid treatments, mimicking Brazilian bioethanol production. CONCLUSIONS: Our study combined genomic, mutational, and fitness analyses to understand the genetic underpinnings of yeast evolution to ethanol shocks. Although fitness analyses revealed that most evolved mutations impose a cost for cell propagation, combination of key mutations cyr1A1474T/usv1Δ endowed yeasts with higher tolerance for growth in the presence of ethanol. Moreover, alleles selected for acute stress survival comprising the P1c genotype conferred stress tolerance and optimal performance under conditions simulating the Brazilian industrial ethanol production.

2.
Microb Pathog ; : 106662, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38663640

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) causes diarrhea in pigs at early age, leading to high mortality rates and significant economic losses in the swine industry. ETEC effect on gut microbiota and immune system is mostly studied in diarrheic model under controlled laboratory conditions, however its impact on asymptomatic carriers remains unknown. Thus, we investigated whether ETEC can modulate gut microbiota or regulate the transcription of immune markers in asymptomatic pigs in farm environment. Stool samples from newborn piglets, nursery and growing pigs, and sows were screened for ETEC markers, then submitted to 16S-rDNA sequencing to explore gut microbiota composition in carriers (ETEC+) and non-carriers (ETEC-) animals. We observed a reduced α-diversity in ETEC+ animals (p<0.05), while bacterial compositions were mostly driven by ageing (p>0.05). Prevotella marked ETEC-carrier group, while Rikenellaceae RC9 gut group was a marker for a healthy gut microbiota, suggesting being biomarker candidates for surveillance and supplementation purposes. Furthermore, we observed transcription regulation of il6 and tff2 genes in ETEC+ in newborn and nursery stages, respectively. Our findings indicate that ETEC presence modulate gut microbiota and the immune response in asymptomatic pigs; nevertheless, further studies using a probabilistic design must be performed to assess the effect of ETEC presence on gut imbalance in pigs despite the age bias.

3.
Anal Biochem ; 687: 115449, 2024 04.
Article in English | MEDLINE | ID: mdl-38145697

ABSTRACT

Determining bacterial and fungal communities from low-biomass samples remains a challenge for high-throughput sequencing. Due to the low microbial load and host contamination, some sites, including the female upper reproductive tract and the lower respiratory tract, were even considered sterile until recent years. Despite efforts to improve sampling and DNA isolation protocols, some samples provide insufficient microbial DNA input for library preparation and sequencing. Herein, we propose an alternative amplicon-PCR protocol to be used in bacterial and fungal sequencing in low-biomass samples, targeting 16S-rDNA and the internal transcribed spacer region (ITS), respectively. Similar to a nested-PCR, we performed two sequential PCR reactions to maximise the target amplicon. We compared metagenomic results from the original Illumina protocol (Protocol 1 - P1) and the alternative one (Protocol 2 - P2), using a mock community and clinical samples with different microbial loads. Our findings showed no significant differences in data generated by P1 and P2, indicating that the second amplification round does not bias the microbiota diversity rates. Thus, the alternative protocol can be applied for low-biomass samples when the original protocol results in spurious output, preventing library preparation and sequencing.


Subject(s)
Bacteria , High-Throughput Nucleotide Sequencing , Female , Humans , Sequence Analysis, DNA/methods , Biomass , Bacteria/genetics , High-Throughput Nucleotide Sequencing/methods , Polymerase Chain Reaction/methods , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics
4.
Microorganisms ; 11(6)2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37375120

ABSTRACT

This study emphasizes the importance of monitoring the microbiological quality of animal products, such as raw sheep's milk and cheese, to ensure food safety. In Brazil, there is currently no legislation governing the quality of sheep's milk and its derivatives. Therefore, this study aimed to evaluate: (i) the hygienic-sanitary quality of raw sheep's milk and cheese produced in southern Brazil; (ii) the presence of enterotoxins and Staphylococcus spp. in these products; and (iii) the susceptibility of the isolated Staphylococcus spp. to antimicrobial drugs and the presence of resistance genes. A total of 35 samples of sheep's milk and cheese were examined. The microbiological quality and presence of enterotoxins were accessed using Petrifilm and VIDAS SET2 methods, respectively. Antimicrobial susceptibility tests were conducted using VITEK 2 equipment and the disc diffusion method. The presence of resistance genes tet(L), sul1, sul2, ermB, tetM, AAC(6)', tetW, and strA were evaluated through PCR. In total, 39 Staphylococcus spp. were obtained. The resistance genes tetM, ermB, strA, tetL, sul1, AAC(6)', and sul2 were detected in 82%, 59%, 36%, 28%, 23%, 3%, and 3% of isolates, respectively. The findings revealed that both raw sheep's milk and cheese contained Staphylococcus spp. that exhibited resistance to antimicrobial drugs and harbored resistance genes. These results underscore the immediate need for specific legislation in Brazil to regulate the production and sale of these products.

5.
An Acad Bras Cienc ; 94(suppl 4): e20220091, 2022.
Article in English | MEDLINE | ID: mdl-36541979

ABSTRACT

The purpose of this study was to compare the composition and stability of bacteria and fungi communities during the propagation of sourdoughs prepared with organic or conventional whole wheat (Triticum aestivum) flours from South Brazil. Sourdoughs were prepared and samples were collected during different fermentation times (0 to 216 h). Total DNA of sourdough samples were extracted and the 16S rRNA gene and Internal Transcribed Spacer region were sequenced by MiSeq-Illumina. A total of 43 and 56 OTUs were identified and defined as core taxa in the bacterial and fungal communities, respectively. The analysis revealed increases in the relative abundances of the lactic acid (Pediococcus pentosaceus, Weissella hellenica and Limosilactobacillus pontis) and acetic acid bacteria (Gluconobacter frateurii and Acetobacter tropicalis) during the sourdough propagation. The filaments fungi, Alternaria tenuissima, Fusarium culmorum, Fusarium petersiae and Microdochium seminicola remained more stable in organic than conventional during propagation cycles. After 216 h of fermentation, both sourdoughs were dominated by acid- and salt-tolerant yeast Issatchenkia orientalis (syn Pichia kudriavzevii, and Candida glycerinogenes). In conclusion, there were no significant differences in microbial communities among the sourdough samples. This study revealed that both flours contain autochthonous LAB, AAB, and yeasts with biotechnological applications in sourdough bread-making.


Subject(s)
Flour , Microbiota , Flour/analysis , Triticum , RNA, Ribosomal, 16S/genetics , Brazil , Microbiota/genetics , Bacteria/genetics , Saccharomyces cerevisiae , Fermentation
6.
Braz J Microbiol ; 53(4): 2215-2222, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36074251

ABSTRACT

This research aimed to identify the diversity of bacterial species of the genus Staphylococcus spp. in subclinical mastitis in dairy herds in the state of Piauí, Northeastern Brazil, and to evaluate the phenotypic and genotypic resistance profile. Samples were obtained from a total of 17 dairy farms, amounting to 321 positive samples in the California Mastitis Test. Staphylococcus spp. were identified by matrix-assisted laser desorption ionization time-of-flight mass spectroscopy. Subsequently, an antibiogram was performed, and a polymerase chain reaction was carried out to screen for resistance genes in the isolates. Among all the isolates, 59.45% (110/185) belonged to the Staphylococcus genus. Moreover, the following Staphylococcus spp. were identified Staphylococcus aureus, 68.1% (75/110); Staphylococcus chromogenes, 12.7% (14/110); Staphylococcus epidermidis, 5.4% (6/110); Staphylococcus sciuri, 4.5% (5/110); Staphylococcus warneri, 2.7% (3/110); Staphylococcus haemolyticus, 1.8% (2/110); Staphylococcus hominis, 1.8% (2/110); Staphylococcus arlettae, 0.9% (1/110); Staphylococcus capitis, 0.9% (1/110); and Staphylococcus gallinarum, 0.9% (1/110). The antibiogram showed a high frequency of resistance to penicillin and ampicillin, 70.0% (77/110) and 61.8% (68/110), respectively, and a low frequency of resistance to gentamicin and vancomycin, 10.9% (12/110) and 11.8% (13/110), respectively. In the genotypic tests for the different species of Staphylococcus spp., the occurrence of the blaZ gene was observed in 60.9% (67/110) of the isolates, followed by tetL and tetM, both with 20.0% (22/110) each, and the mecA and vanB genes were detected in 0.9% (1/110) of the samples. The identification of all Staphylococcus species isolated from subclinical mastitis cases and the phenotypic and genotypic resistance characterization in these isolates is of great importance for dairy farming in the state of Piauí, as well as for public health.


Subject(s)
Mastitis, Bovine , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Cattle , Animals , Female , Humans , Mastitis, Bovine/microbiology , Brazil/epidemiology , Staphylococcus/genetics , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Staphylococcal Infections/microbiology , Microbial Sensitivity Tests , Milk/microbiology , Anti-Bacterial Agents/pharmacology
7.
Plant Foods Hum Nutr ; 77(4): 495-503, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36169873

ABSTRACT

Yerba Mate (YM) is a food product derived from Ilex paraguariensis whose constituents obtained from its extract, mainly the phenolic fraction, have been linked to numerous health benefits, such as cardiovascular protection, weight reduction, glucose control, and gene modulation. However, evidences linking phenolic compounds (PC) intake and human health are still limited and often contentious. Several researches have shown that key PC elements are poorly absorbed in humans and exist predominantly as conjugates, which may not be bioactive but may play a crucial role when interacting with the gut microbiota (GM). As the intestine is the largest microorganism-populated organ in the human body, GM has been regarded as a "microbial organ", acting as a second genome for modulating the host's health phenotype. For this reason, the study of intestinal microbiota has received considerable attention in recent years. Its impact on the development of nutrition-related diseases must motivate broader researches on the interaction between YM's PC and GM regarding the production of metabolites that may influence human health. This review aimed to gather and assess the available information about how PC from YM may impact host metabolism and the immune system and GM.


Subject(s)
Ilex paraguariensis , Humans , Blood Glucose , Plant Extracts , Phenols , Antioxidants
8.
An Acad Bras Cienc ; 94(1): e20201765, 2022.
Article in English | MEDLINE | ID: mdl-35293513

ABSTRACT

Antimicrobial resistance has been attributed to the overuse of antibiotics. To control the use of antibiotics, Brazil adopted the RDC 20/2011. A comparison the antibiotic-resistance profile of bacterial has provided important insights into resistance evolution. Enterococci are ubiquitous bacteria recommended to be used as a sentinel organism, in national surveillance systems, for tracking antimicrobial resistance through the food chain. The present study aimed to evaluate the diversity and antimicrobial resistance of enterococci collected from food in South Brazil in 2017 (pos-RDC 20/11) for comparison with isolated in 2007 (pre-RDC 20/11). A total of 310 enterococci were isolated from vegetables and products of animal origin, identified by PCR and MALDI-TOF, tested for antimicrobial susceptibility and screened for resistance genes. Enterococcus casseliflavus was dominant in vegetables and E. faecalis in products of animal origin. Enterococcal isolates in 2017 were mostly sensitive to ampicillin, gentamicin, chloramphenicol, and vancomycin when compared to isolated collected in 2007. While resistance levels to most compounds remained relatively stable, multidrug resistance decreased by 24% during this period. Our results suggest that RDC 20/11 had a positive outcome in controlling the spread of antimicrobial resistance. This study provides baseline data to measure future changes in the prevalence of resistant enterococci.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Bacterial , Ampicillin , Animals , Anti-Bacterial Agents/pharmacology , Brazil , Vegetables
9.
Food Microbiol ; 101: 103889, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34579857

ABSTRACT

Kombucha is a traditional fermented beverage gaining popularity around the world. So far, few studies have investigated its microbiome using next-generation DNA sequencing, whereas the correlation between the microbial community and metabolites evolution along fermentation is still unclear. In this study, we explore this correlation in a traditionally produced kombucha by evaluating its microbial community and the main metabolites produced. We also investigated the effects of starter cultures processed in three different ways (control, starter culture without liquid suspension (CSC), and a freeze-dried starter culture (FDSC)) to evaluate changes in kombucha composition, such as antioxidant activity and sensory analysis. We identified seven genera of bacteria, including Komagataeibacter, Gluconacetobacter, Gluconobacter, Acetobacter, Liquorilactobacillus, Ligilactobacillus, and Zymomonas, and three genera of yeasts, Dekkera/Brettanomyces, Hanseniaspora, and Saccharomyces. Although there were no statistically significant differences in the acceptance test in sensory analysis, different starter cultures resulted in products showing different microbial and biochemical compositions. FDSC decreased Zymomonas and Acetobacter populations, allowing for Gluconobacter predominance, whereas in the control and CSC kombuchas the first two were the predominant genera. Results suggest that the freeze-drying cultures could be implemented to standardize the process and, despite it changes the microbial community, a lower alcohol content could be obtained.


Subject(s)
Bacteria/classification , Fermented Beverages/microbiology , Microbiota , Yeasts/classification , Fermentation , Freeze Drying
10.
Curr Res Microb Sci ; 2: 100048, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34841339

ABSTRACT

Gut microbiota are influenced by factors such as diet, habitat, and social contact, which directly affect the host's health. Studies related to gut microbiota in non-human primates are increasing worldwide. However, little remains known about the gut bacterial composition in wild Brazilian monkeys. Therefore, we studied the fecal microbiota composition of wild black capuchin monkey (Sapajus nigritus) (n=10) populations from two different Atlantic Forest biome fragments (five individuals per fragment) in south Brazil. The bacterial community was identified via the high-throughput sequencing and partial amplification of the 16S rRNA gene (V4 region) using an Ion Personal Genome Machine (PGMTM) System. In contrast to other studies involving monkey microbiota, which have generally reported the phyla Firmicutes and Bacteroidetes as predominant, black capuchin monkeys showed a high relative abundance of Proteobacteria ( χ ¯ = 80.54%), followed by Firmicutes ( χ ¯ = 12.14%), Actinobacteria ( χ ¯ = 4.60%), and Bacteriodetes ( χ ¯ = 1.31%). This observed particularity may have been influenced by anthropogenic actions related to the wild habitat and/or diet specific to the Brazilian biome's characteristics and/or monkey foraging behavior. Comparisons of species richness (Chao1) and diversity indices (Simpson and InvSimpson) showed no significant differences between the two groups of monkeys. Interestingly, PICRUSt2 analysis revealed that metabolic pathways present in the bacterial communities were associated with xenobiotic biodegradation and the biosynthesis of secondary metabolites, which may suggest positive effects on monkey health and conservation in this anthropogenic habitat. Infectious disease-associated microorganisms were also observed in the samples. The present study provides information about the bacterial population and metabolic functions present in fecal microbiota, which may contribute to a better understanding of the ecology and biology of black capuchin monkeys living in forest fragments within the Atlantic Forest biome in southern Brazil. Additionally, the present study demonstrates that the fecal bacterial communities of wild black capuchin monkeys in this area are divergent from those of other wild non-human primates.

11.
Mar Drugs ; 19(6)2021 Jun 06.
Article in English | MEDLINE | ID: mdl-34204046

ABSTRACT

New ecosystems are being actively mined for new bioactive compounds. Because of the large amount of unexplored biodiversity, bacteria from marine environments are especially promising. Further, host-associated microbes are of special interest because of their low toxicity and compatibility with host health. Here, we identified and characterized biosynthetic gene clusters encoding antimicrobial compounds in host-associated enterococci recovered from fecal samples of wild marine animals remote from human-affected ecosystems. Putative biosynthetic gene clusters in the genomes of 22 Enterococcus strains of marine origin were predicted using antiSMASH5 and Bagel4 bioinformatic software. At least one gene cluster encoding a putative bioactive compound precursor was identified in each genome. Collectively, 73 putative antimicrobial compounds were identified, including 61 bacteriocins (83.56%), 10 terpenes (13.70%), and 2 (2.74%) related to putative nonribosomal peptides (NRPs). Two of the species studied, Enterococcus avium and Enterococcus mundtti, are rare causes of human disease and were found to lack any known pathogenic determinants but yet possessed bacteriocin biosynthetic genes, suggesting possible additional utility as probiotics. Wild marine animal-associated enterococci from human-remote ecosystems provide a potentially rich source for new antimicrobial compounds of therapeutic and industrial value and potential probiotic application.


Subject(s)
Animals, Wild/microbiology , Anti-Infective Agents , Aquatic Organisms/microbiology , Bacteriocins/genetics , Enterococcus/genetics , Probiotics , Terpenes , Animals , Anti-Infective Agents/metabolism , Bacteriocins/classification , Bacteriocins/metabolism , Computational Biology , Enterococcus/metabolism , Feces/microbiology , Multigene Family , Probiotics/metabolism , Terpenes/classification , Terpenes/metabolism
12.
Front Microbiol ; 12: 644089, 2021.
Article in English | MEDLINE | ID: mdl-33936002

ABSTRACT

Ethanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288C and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of a particular family of SAM-dependent methyl transferases, rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.

13.
Microorganisms ; 9(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499099

ABSTRACT

Melanophryniscus admirabilis (admirable red-belly toad) is a microendemic and critically endangered species found exclusively along 700 m of the Forqueta River, in a fragment of the Atlantic Forest of southern Brazil. One of the greatest concerns regarding the conservation of this species is the extensive use of pesticides in areas surrounding their natural habitat. In recent years, the adaptation and persistence of animal species in human-impacted environments have been associated with microbiota. Therefore, the present study aimed to characterize the oral bacterial community of wild M. admirabilis and to address the question of how this community might contribute to this toad's adaptation in the anthropogenic environment as well as its general metabolic capabilities. A total of 11 oral samples collected from wild M. admirabilis were characterized and analyzed via high-throughput sequencing. Fragments of the 16S rRNA variable region 4 (V4) were amplified, and sequencing was conducted using an Ion Personal Genome Machine (PGM) System with 316 chips. A total of 181,350 sequences were obtained, resulting in 16 phyla, 34 classes, 39 orders, and 77 families. Proteobacteria dominated (53%) the oral microbiota of toads, followed by Firmicutes (18%), Bacteroidetes (17%), and Actinobacteria (5%). No significant differences in microbial community profile from among the samples were reported, which suggests that the low dietary diversity observed in this population may directly influence the bacterial composition. Inferences of microbiome function were performed using PICRUSt2 software. Important pathways (e.g., xenobiotic degradation pathways for pesticides and aromatic phenolic compounds) were detected, which suggests that the bacterial communities may serve important roles in M. admirabilis health and survival in the anthropogenic environment. Overall, our results have important implications for the conservation and management of this microendemic and critically endangered species.

14.
Heliyon ; 6(8): e04461, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32904280

ABSTRACT

Primarily formed by the microbial decarboxylation of the amino acid histidine, histamine is the leading global cause of food poisoning from fish consumption worldwide. In the present work, the quality of 12 fresh and 12 frozen marketed sardines (Sardinella brasiliensis) were evaluated for histamine concentration using High-performance Liquid Chromatography with Diode-Array Detection (HPLC-DAD), while the detection and quantification of histamine-producing bacteria were performed via quantitative Polymerase Chain Reaction (qPCR), and the microbiota composition of sardines was assessed through amplification of the 16S rRNA gene using high-throughput sequencing (HTS). According to the results obtained by HPLC-DAD, histamine concentration ranged from 226.14 to 583.87 mg kg-1. The histidine decarboxylase (hdc) genes from gram-negative bacteria (Morganella morganii, and Enterobacter aerogenes) were identified. The most abundant microorganisms present in fresh sardines belong to the genera Macrococcus spp., Acinetobacter spp., and Pseudomonas spp., while the genera Phyllobacterium spp., Pseudomonas spp., and Acinetobacter spp. were most abundant in frozen sardines.

15.
Appl Environ Microbiol ; 86(19)2020 09 17.
Article in English | MEDLINE | ID: mdl-32737129

ABSTRACT

Enterococci are commensals that proliferated as animals crawled ashore hundreds of millions of years ago. They are also leading causes of multidrug-resistant hospital-acquired infections. While most studies are driven by clinical interest, comparatively little is known about enterococci in the wild or the effect of human activity on them. Pharmaceutical pollution and runoff from other human activities are encroaching widely into natural habitats. To assess their reach into remote habitats, we investigated the identity, genetic relatedness, and presence of specific traits among 172 enterococcal isolates from wild Magellanic penguins. Four enterococcal species, 18 lineage groups, and different colonization patterns were identified. One Enterococcus faecalis lineage, sequence type 475 (ST475), was isolated from three different penguins, making it of special interest. Its genome was compared to those of other E. faecalis sequence types (ST116 and ST242) recovered from Magellanic penguins, as well as to an existing phylogeny of E. faecalis isolated from diverse origins over the past 100 years. No penguin-derived E. faecalis strains were closely related to dominant clinical lineages. Most possessed intact CRISPR defenses, few mobile elements, and antibiotic resistances limited to those intrinsic to the species and lacked pathogenic features conveyed by mobile elements. Interestingly, plasmids were identified in penguin isolates that also had been reported for other marine mammals. Enterococci isolated from penguins showed limited anthropogenic impact, indicating that they are likely representative of those naturally circulating in the ecosystem inhabited by the penguins. These findings establish an important baseline for detecting the encroachment of human activity into remote planetary environments.IMPORTANCE Enterococci are host-associated microbes that have an unusually broad range, from the built hospital environment to the guts of insects and other animals in remote locations. Despite their occurrence in the guts of animals for hundreds of millions of years, we know little about the properties that confer this range or how anthropogenic activities may be introducing new selective forces. Magellanic penguins live at the periphery of human habitation. It was of interest to examine enterococci from these animals for the presence of antibiotic resistance and other markers reflective of anthropogenic selection. Diverse enterococcal lineages found discount the existence of a single well-adapted intrinsic penguin-specific species. Instead, they appear to be influenced by a carnivorous lifestyle and enterococci present in the coastal sea life consumed. These results indicate that currently, the penguin habitat remains relatively free of pollutants that select for adaptation to human-derived stressors.


Subject(s)
Ecosystem , Enterococcus/isolation & purification , Environmental Biomarkers , Spheniscidae/microbiology , Animals , Brazil
16.
PeerJ ; 8: e8647, 2020.
Article in English | MEDLINE | ID: mdl-32149028

ABSTRACT

BACKGROUND: Studies evaluating bacteria in insects can provide information about host-microorganism-environment interactions. The gut microbial community has a profound effect on different physiological functions of insects. Enterococcus spp. are part of the gut community in humans and other animals, as well as in insects. The presence and antimicrobial resistance profile of enterococci are well studied in different animals; however, data for Heliconius erato phyllis (Lepidoptera: Nymphalidae) do not yet exist. Therefore, the aims of this study were to evaluate the distribution of enterococcal species, their antimicrobial resistance profile and virulence genes, and the genetic relationships between enterococci isolated from fecal samples from sibling and non-sibling H. erato phyllis caterpillars collected from different sites in South Brazil. METHODS: Three H. erato phyllis females were captured (two from a forest fragment and one from an urban area), and kept individually in open-air insectaries. Eggs were collected and caterpillars (siblings and non-siblings) were fed daily with Passiflora suberosa leaves. Fecal samples (n = 12) were collected from fifth-instar caterpillars, inoculated in selective medium, and 15 bacterial colonies were randomly selected from each sample. Enterococci were identified by PCR and MALDI-TOF, analyzed by disk diffusion antimicrobial susceptibility tests, and screened for resistance and virulence genes by PCR. The genetic relationships between the strains were determined using pulsed-field gel electrophoresis (PFGE). RESULTS: A total of 178 enterococci strains were identified: E. casseliflavus (74.15%; n = 132), E. mundtii (21.34%; n = 38), E. faecalis (1.12%; n = 2) and Enterococcus sp. (3.37%; n = 6). High rates of resistance to rifampicin (56%) and erythromycin (31%) were observed; 120 (67.41%) of the isolates showed resistance to at least one antibiotic and six (3.37%) were multidrug-resistant.None of the erythromycin-resistant strains was positive for the erm(B) and msrC genes. The virulence genes esp, ace, and gelE were observed in 35%, 7%, and 1% of the strains, respectively. PFGE separated the enterococci into 22 patterns, four being composed of strains from sibling caterpillars. CONCLUSION: Enterococcus casseliflavus was the dominant species in fecal samples of fifth-instar caterpillars. Resistant enterococci strains may be related to environmental pollution or the resistome. The PFGE analysis showed genetic relationships between some strains, suggesting that the enterococci isolated from fecal samples of the sibling caterpillars might have come from common sources, e.g., via diet (herbivory) and/or vertical transmission (through the egg surface). Further studies will be conducted to better understand the role of Enterococcus in the microbial community of the gastrointestinal tract of these insects, and the mechanisms involved in acquisition and maintenance of enterococci.

17.
Front Vet Sci ; 7: 606377, 2020.
Article in English | MEDLINE | ID: mdl-33426025

ABSTRACT

Enterococci are ubiquitous microorganisms present in various environments and within the gastrointestinal tracts of humans and other animals. Notably, fecal enterococci are suitable indicators for monitoring antimicrobial resistance dissemination. Resistant bacterial strains recovered from the fecal samples of wild animals can highlight important aspects of environmental disturbances. In this report, we investigated antimicrobial susceptibility as well as resistance and virulence genes in fecal enterococci isolated from wild Pampas foxes (Lycalopex gymnocercus) (n = 5) and Geoffroy's cats (Leopardus geoffroyi) (n = 4) in the Brazilian Pampa biome. Enterococci were isolated from eight out of nine fecal samples and Enterococcus faecalis was identified in both animals. However, E. faecium and E. durans were only detected in Pampas foxes, while E. hirae was only detected in Geoffroy's cats. Antimicrobial susceptibility analysis showed resistance to rifampicin (94%), erythromycin (72.6%), ciprofloxacin/norfloxacin (40%), streptomycin (38%), and tetracycline (26%). The high frequency of multidrug-resistant enterococci (66%) isolated in this study is a matter of concern since these are wild animals with no history of therapeutic antibiotic exposure. The tetM/tetL and msrC/ermB genes were detected in most tetracycline- and erythromycin-resistant enterococci, respectively. The gelE, ace, agg, esp, and clyA virulence genes were also detected in enterococci. In conclusion, our data suggest that habitat fragmentation and anthropogenic activities in the Pampa biome may contribute to high frequencies of multidrug-resistant enterococci in the gut communities of wild Pampas foxes and Geoffroy's cats. To the best of the authors' knowledge, this is the first report of antimicrobial-resistant enterococci in the Pampa biome.

19.
Food Chem ; 286: 113-122, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30827583

ABSTRACT

Phenolic and nitrogenous compounds from different styles craft beers were identified by high performance liquid chromatography and mass spectrometry in order to stratify beer samples according to their style. For this, an exploratory assessment relying on Linear Discriminant Analysis was performed. Fifty-seven phenolic compounds were reported and twelve of them were found for the first time in beer: benzoic acids, 2,4-dihydroxybenzoic acid, 2,3-dihydroxybenzoic acid, dimethoxybenzoic acid; phenolic acid conjugates, 3-p-coumaroylquinic acid, 4-p-coumaroylquinic acid, 3-feruloylquinic acid, 4-feruloylquinic acid, 5-feruloylquinic acid; flavonoids, taxifolin hexoside, quercetin dihexoside, apigenin-6,8-dipentoside, and isofraxidin hexoside. Additionally, 11 nitrogenous compounds belonging to the phenolamide class were found. Two discriminant functions were generated and allowed a satisfactory separation among all beer styles. 3-Caffeoylquinic acid, 3-p-coumaroylquinic acid, 4-p-coumaroylquinic acid, 5-caffeoylquinic acid, coumaric acid, kaempferol-3-O-rutinoside, proanthocyanidin B dimer III and proanthocyanidin B dimer V were the compounds that showed the highest capacity of discriminate the beer styles (IPA, Lager and Weiss).


Subject(s)
Beer/analysis , Food Analysis/methods , Nitrogen Compounds/analysis , Phenols/analysis , Chlorogenic Acid/analysis , Chromatography, High Pressure Liquid/methods , Flavonoids/analysis , Hydroxybenzoates/analysis , Molecular Weight , Nitrogen Compounds/chemistry , Phenols/chemistry , Quinic Acid/analogs & derivatives , Quinic Acid/analysis , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods
20.
Arq. Inst. Biol ; 86: 0202018, 2019. tab
Article in English | LILACS, VETINDEX | ID: biblio-979668

ABSTRACT

In recent years, compounds with biological properties produced by plants have received attention as an alternative to control microorganisms. Essential oils extracted from green leaves of Eucalyptus sp. have been demonstrated to have antimicrobial activities, but so far there are no reports of antimicrobial activity of essential oils extracted from dried leaves of Eucalyptus staigeriana. So, the objectives of this study were to determine the chemical composition of the essential oils obtained from dried leaves of E. staigeriana (EOdlES) and to evaluate in vitro antimicrobial and antibiofilm activities of EOdlES against gram-positive and gram-negative, resistance and multiresistant Enterococcus faecalis isolated from food and clinical samples. The characterization of EOdlES was performed by gas chromatography-mass spectrometry (GC/MS). For this study, 26 bacterial strains were used, which included 11 reference strains and 15 antibiotic resistant and multiresistant E. faecalis strains. Antimicrobial activities of EOdlES against gram-positive and gram-negative were determined using the disc diffusion method. The minimum inhibitory concentration (MIC) value was evaluated by a microbroth dilution technique. The antibiofilm effects were assessed by microtiter plate method. As a result, 21 compounds were identified, being oxygenated monoterpenes (69.58%) the major chemical family. EOdlES showed only antimicrobial activity against gram-positive strains. E. faecalis resistant and multiresistant strains show the lowest MIC (3.12 to 6.25%), when compared with reference E. faecalis strain. EOdlES has the ability to inhibit the biofilm formation, but little or none ability to inhibit the preformed biofilm. This study demonstrates that EOdlES is a promising alternative to control important foodborne and clinic gram-positive resistant bacteria.(AU)


Nos últimos anos, compostos com propriedades biológicas produzidas por plantas têm recebido atenção como alternativa de controle de micro-organismos. Óleos essenciais extraídos de folhas verdes de Eucalyptus sp. têm demonstrado atividades antimicrobianas. No entanto, até o momento não há nenhum relato de atividade antimicrobiana de óleos essenciais extraídos de folhas secas de Eucalyptus staigeriana. O objetivo deste estudo foi determinar a composição química dos óleos essenciais obtidos de folhas secas de E. staigeriana e avaliar in vitro a sua atividade antimicrobiana e de antibiofilme contra gram-positivas e gram-negativas e também resistentes e multirresistentes de Enterococcus faecalis isolados de amostras de alimentos e clínicas. A caracterização de E. staigeriana foi realizada por CG-EM. Para este estudo foram utilizadas 26 cepas bacterianas, que incluíram 11 cepas referência e 15 cepas de E. faecalis resistentes a antibióticos. A atividade antimicrobiana de E. staigeriana contra gram-positivas e gram-negativas foi determinada utilizando o método de disco-difusão. Os valores da concentração inibitória mínima foram avaliados pela técnica de microdiluição. Os efeitos de antibiofilme foram avaliados pelo método de placa de microtitulação. Como resultado, 21 compostos foram identificados, sendo monoterpenos oxigenados (69,58%) a grande família química. E. staigeriana mostrou apenas atividade antimicrobiana contra cepas gram-positivas. Cepas de E. faecalis resistentes e multirresistentes mostraram a menor concentração inibitória mínima (3,12 para 6,25%) quando comparado com a cepa referência de E. faecalis. E. staigeriana apresentou a capacidade de inibir a formação de biofilme, mas pouca ou nenhuma capacidade de inibir o biofilme pré-formado. Este estudo demonstra que o óleo essencial obtido de folhas secas de E. staigeriana é uma alternativa promissora para controle importante de bactérias gram-positivas resistentes de origem alimentar e clínicas.(AU)


Subject(s)
Oils, Volatile , Drug Resistance, Bacterial , Eucalyptus/chemistry , Anti-Infective Agents
SELECTION OF CITATIONS
SEARCH DETAIL
...